0

The Design and Fabrication of Supramolecular Semiconductor Nanowires Formed by Benzothienobenzothiophene (BTBT)-conjugated Peptides

Mohammad Aref Khalily, Hakan Usta, Mehmet Ozdemir, Gokhan Bakan, F Begum Dikecoglu, Charlotte Edwards-Gayle, Jessica A Hutchinson, Ian W Hamley, Aykutlu Dana, Mustafa O Guler

Nanoscale. 2018 May 31;10(21):9987-9995.

PMID: 29774920

Abstract:

π-Conjugated small molecules based on a [1]benzothieno[3,2-b]benzothiophene (BTBT) unit are of great research interest in the development of solution-processable semiconducting materials owing to their excellent charge-transport characteristics. However, the BTBT π-core has yet to be demonstrated in the form of electro-active one-dimensional (1D) nanowires that are self-assembled in aqueous media for potential use in bioelectronics and tissue engineering. Here we report the design, synthesis, and self-assembly of benzothienobenzothiophene (BTBT)-peptide conjugates, the BTBT-peptide (BTBT-C3-COHN-Ahx-VVAGKK-Am) and the C8-BTBT-peptide (C8-BTBT-C3-COHN-Ahx-VVAGKK-Am), as β-sheet forming amphiphilic molecules, which self-assemble into highly uniform nanofibers in water with diameters of 11-13(±1) nm and micron-size lengths. Spectroscopic characterization studies demonstrate the J-type π-π interactions among the BTBT molecules within the hydrophobic core of the self-assembled nanofibers yielding an electrical conductivity as high as 6.0 × 10-6 S cm-1. The BTBT π-core is demonstrated, for the first time, in the formation of self-assembled peptide 1D nanostructures in aqueous media for potential use in tissue engineering, bioelectronics and (opto)electronics. The conductivity achieved here is one of the highest reported to date in a non-doped state.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP583050708 C8-BTBT C8-BTBT 583050-70-8 Price
qrcode