0

The Nrf2 Activator MIND4-17 Protects Retinal Ganglion Cells From High Glucose-Induced Oxidative Injury

Nan Chen, Ya Li, Nan Huang, Jin Yao, Wei-Feng Luo, Qin Jiang

J Cell Physiol. 2020 Feb 5.

PMID: 32020639

Abstract:

Diabetic retinopathy (DR) is a leading cause of acquired blindness among adults. High glucose (HG) induces oxidative injury and apoptosis in retinal ganglion cells (RGCs), serving as a primary pathological mechanism of DR. MIND4-17 activates nuclear-factor-E2-related factor 2 (Nrf2) signaling via modifying one cysteine (C151) residue of Kelch-like ECH-associated protein 1 (Keap1). The current study tested its effect in HG-treated primary murine RGCs. We show that MIND4-17 disrupted Keap1-Nrf2 association, leading to Nrf2 protein stabilization and nuclear translocation, causing subsequent expression of key Nrf2 target genes, including heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1. Functional studies showed that MIND4-17 pretreatment significantly inhibited HG-induced cytotoxicity and apoptosis in primary murine RGCs. Reactive oxygen species production and oxidative injury in HG-treated murine RGCs were attenuated by MIND4-17. Nrf2 silencing (by targeted small interfering RNA) or knockout (by CRISPR/Cas9 method) abolished MIND4-17-induced RGC cytoprotection against HG. Additionally, Keap1 knockout or silencing mimicked and abolished MIND4-17-induced activity in RGCs. In vivo, MIND4-17 intravitreal injection activated Nrf2 signaling and attenuated retinal dysfunction by light damage in mice. We conclude that MIND4-17 activates Nrf2 signaling to protect murine RGCs from HG-induced oxidative injury.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP345989244 MIND4-17 MIND4-17 345989-24-4 Price
qrcode