0

The Protective Role of the TOPK/PBK Pathway in Myocardial Ischemia/Reperfusion and H₂O₂-Induced Injury in H9C2 Cardiomyocytes

Guozhe Sun, Ning Ye, Dongxue Dai, Yintao Chen, Chao Li, Yingxian Sun

Int J Mol Sci. 2016 Feb 23;17(3):267.

PMID: 26907268

Abstract:

T-LAK-cell-originated protein kinase (TOPK) is a PDZ-binding kinase (PBK) that was recently identified as a novel member of the mitogen-activated protein kinase (MAPK) family. It has been shown to play an important role in many cellular functions. However, its role in cardiac function remains unclear. Thus, we have herein explored the biological function of TOPK in myocardial ischemia/reperfusion (I/R) and oxidative stress injury in H9C2 cardiomyocytes. I/R and ischemic preconditioning (IPC) were induced in rats by 3-hour reperfusion after 30-min occlusion of the left anterior descending coronary artery and by 3 cycles of 5-min I/R. Hydrogen peroxide (H₂O₂) was used to induce oxidative stress in H9C2 cardiomyocytes. TOPK expression was analyzed by western blotting, RT-PCR, immunohistochemical staining, and immunofluorescence imaging studies. The effects of TOPK gene overexpression and its inhibition via its inhibitor HI-TOPK-032 on cell viability and Bcl-2, Bax, ERK1/2, and p-ERK1/2 protein expression were analyzed by MTS assay and western blotting, respectively. The results showed that IPC alleviated myocardial I/R injury and induced TOPK activation. Furthermore, H₂O₂ induced TOPK phosphorylation in a time-dependent manner. Interestingly, TOPK inhibition aggravated the H₂O₂-induced oxidative stress injury in myocardiocytes, whereas overexpression relieved it. In addition, the ERK pathway was positively regulated by TOPK signaling. In conclusion, our results indicate that TOPK might mediate a novel survival signal in myocardial I/R, and that its effect on anti-oxidative stress involves the ERK signaling pathway.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP487020031 HI-TOPK-032 HI-TOPK-032 487020-03-1 Price
qrcode