0

Thermodynamics of Interaction of Ionic Liquids With Lipid Monolayer

G Bhattacharya, S Mitra, P Mandal, S Dutta, R P Giri, S K Ghosh

Biophys Rev. 2018 Jun;10(3):709-719.

PMID: 29305702

Abstract:

Understanding the interaction of ionic liquids with cellular membrane becomes utterly important to comprehend the activities of these liquids in living organisms. Lipid monolayer formed at the air-water interface is employed as a model system to follow this interaction by investigating important thermodynamic parameters. The penetration kinetics of the imidazolium-based ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4]) into the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid layer is found to follow the Boltzmann-like equation that reveals the characteristic time constant which is observed to be the function of initial surface pressure. The enthalpy and entropy calculated from temperature-dependent pressure-area isotherms of the monolayer show that the added ionic liquids bring about a disordering effect in the lipid film. The change in Gibbs free energy indicates that an ionic liquid with longer chain has a far greater disordering effect compared to an ionic liquid with shorter chain. The differential scanning calorimetric measurement on a multilamellar vesicle system shows the main phase transition temperature to shift to a lower value, which, again, indicates the disordering effect of the ionic liquid on lipid membrane. All these studies fundamentally point out that, when ionic liquids interact with lipid molecules, the self-assembled structure of a cellular membrane gets perturbed, which may be the mechanism of these molecules having adverse effects on living organisms.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP244193564 1-Decyl-3-methylimidazolium tetrafluoroborate 1-Decyl-3-methylimidazolium tetrafluoroborate 244193-56-4 Price
qrcode