0

Toward the Structure of presenilin/γ-secretase and Presenilin Homologs

Michael S Wolfe

Biochim Biophys Acta. 2013 Dec;1828(12):2886-97.

PMID: 24099007

Abstract:

Presenilin is the catalytic component of the γ-secretase complex, a membrane-embedded aspartyl protease that plays a central role in biology and in the pathogenesis of Alzheimer's disease. Upon assembly with its three protein cofactors (nicastrin, Aph-1 and Pen-2), presenilin undergoes autoproteolysis into two subunits, each of which contributes one of the catalytic aspartates to the active site. A family of presenilin homologs, including signal peptide peptidase, possess proteolytic activity without the need for other protein factors, and these simpler intramembrane aspartyl proteases have given insight into the action of presenilin within the γ-secretase complex. Cellular and molecular studies support a nine-transmembrane topology for presenilins and their homologs, and small-molecule inhibitors and cysteine scanning with crosslinking have suggested certain presenilin residues and regions that contribute to substrate recognition and handling. Identification of partial complexes has also offered clues to protein-protein interactions within the γ-secretase complex. Biophysical methods have allowed 3D views of the γ-secretase complex and presenilins. Most recently, the crystal structure of a microbial presenilin homolog has confirmed a nine-transmembrane topology and intramembranous location and proximity of the two conserved and essential aspartates. The crystal structure also provides a platform for the formulation of specific hypotheses regarding substrate interaction and catalysis as well as the pathogenic mechanism of Alzheimer-causing presenilin mutations. This article is part of a Special Issue entitled: Intramembrane Proteases.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
IAR4248117 Presenilin-1 N-Terminal Peptide Presenilin-1 N-Terminal Peptide Price
qrcode