Treatment Options for Vancomycin-Resistant Enterococcal Infections
Peter K Linden
Drugs. 2002;62(3):425-41.
PMID: 11827558
Abstract:
Serious infection with vancomycin-resistant enterococci (VRE) usually occurs in patients with significantly compromised host defences and serious co-morbidities, and this magnifies the importance of effective antimicrobial treatment. Assessments of antibacterial efficacy against VRE have been hampered by the lack of a comparator treatment arm(s), complex treatment requirements including surgery, and advanced illness-severity associated with a high crude mortality. Treatment options include available agents which don't have a specific VRE approval (chloramphenicol, doxycycline, high-dose ampicillin or ampicillin/sulbactam), and nitrofurantoin (for lower urinary tract infection). The role of antimicrobial combinations that have shown in vitro or animal-model in vivo efficacy has yet to be established. Two novel antimicrobial agents (quinupristin/ dalfopristin and linezolid) have emerged as approved therapeutic options for vancomycin-resistant Enterococcus faecium on the basis of in vitro susceptibility and clinical efficacy from multicentre, pharmaceutical company-sponsored clinical trials. Quinupristin/dalfopristin is a streptogramin, which impairs bacterial protein synthesis at both early peptide chain elongation and late peptide chain extrusion steps. It has bacteriostatic activity against vancomycin-resistant E. faecium [minimum concentration to inhibit growth of 90% of isolates (MIC(90)) = 2 microg/ml] but is not active against Enterococcus faecalis (MIC(90 )= 16 microg/ml). In a noncomparative, nonblind, emergency-use programme in patients who were infected with Gram-positive isolates resistant or refractory to conventional therapy or who were intolerant of conventional therapy, quinupristin/dalfopristin was administered at 7.5 mg/kg every 8 hours. The clinical response rate in the bacteriologically evaluable subset was 70.5%, and a 65.8% overall response (favourable clinical and bacteriological outcome) was observed. Resistance to quinupristin/dalfopristin on therapy was observed in 6/338 (1.8%) of VRE strains. Myalgia/arthralgia was the most frequent treatment-limiting adverse effect. In vitro studies which combine quinupristin/dalfopristin with ampicillin or doxycyline have shown enhanced killing effects against VRE; however, the clinical use of combined therapy remains unestablished. Linezolid, an oxazolidinone compound that acts by inhibiting the bacterial pre-translational initiation complex formation, has bacteriostatic activity against both vancomycin resistant E. faecium (MIC(90) = 2 to 4 microg/ml) and E. faecalis (MIC(90) = 2 to 4 microg/ml). This agent was studied in a similar emergency use protocol for multi-resistant Gram-positive infections. 55 of 133 evaluable patients were infected with VRE. Cure rates for the most common sites were complicated skin and soft tissue 87.5% (7/8), primary bacteraemia 90.9% (10/11), peritonitis 91.7% (11/12), other abdominal/pelvic infections 91.7% (11/12), and catheter-related bacteraemia 100% (9/9). There was an all-site response rate of 92.6% (50/54). In a separate blinded, randomised, multicentre trial for VRE infection at a variety of sites, intravenous low dose linezolid (200mg every 12 hours) was compared to high dose therapy (600 mg every 12 hours) with optional conversion to oral administration. A positive dose response (although statistically nonsignificant) was seen with a 67% (39/58) and 52% (24/46) cure rate in the high- and low-dose groups, respectively. Adverse effects of linezolid therapy have been predominantly gastrointestinal (nausea, vomiting, diarrhoea), headache and taste alteration. Reports of thrombocytopenia appear to be limited to patients receiving somewhat longer courses of treatment (>14 to 21 days). Linezolid resistance (MIC > or = 8 microg/ml) has been reported in a small number of E. faecium strains which appears to be secondary to a base-pair mutation in the genome encoding for the bacterial 23S ribosome binding site. At present a comparative study between the two approved agents for VRE (quinupristin/dalfopristin and linezolid) has not been performed. Several investigational agents are currently in phase II or III trials for VRE infection. This category includes daptomycin (an acidic lipopeptide), oritavancin (LY-333328; a glycopeptide), and tigilcycline (GAR-936; a novel analogue of minocycline). Finally, strategies to suppress or eradicate the VRE intestinal reservoir have been reported for the combination of oral doxycyline plus bacitracin and oral ramoplanin (a novel glycolipodepsipeptide). If successful, a likely application of such an approach is the reduction of VRE infection during high risk periods in high risk patient groups such as the post-chemotherapy neutropenic nadir or early post-solid abdominal organ transplantation.
Chemicals Related in the Paper: