0

Uncovering malathion (an organophosphate insecticide) action on Ca 2+ signal transduction and investigating the effects of BAPTA-AM (a cell-permeant Ca 2+ chelator) on protective responses in glial cells

Shu-Shong Hsu, Chung-Ren Jan, Wei-Zhe Liang

Pestic Biochem Physiol. 2019 Jun;157:152-160.

PMID: 31153463

Abstract:

Malathion, one of commonly used organophosphate insecticides, has a wide range of toxic actions in different models. However, the effect of this compound on Ca2+ homeostasis and its related cytotoxicity in glial cells is elusive. This study examined whether malathion evoked intracellular Ca2+ concentration ([Ca2+]i) rises and established the relationship between Ca2+ signaling and cytotoxicity in normal human astrocytes, rat astrocytes and human glioblastoma cells. The data show that malathion induced concentration-dependent [Ca2+]i rises in Gibco® Human Astrocytes (GHA cells), but not in DI TNC1 normal rat astrocytes and DBTRG-05MG human glioblastoma cells. In GHA cells, this Ca2+ signal response was reduced by removing extracellular Ca2+. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished malathion-induced [Ca2+]i rises. Conversely, incubation with malathion abolished thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 also blocked malathion-induced [Ca2+]i rises. In Ca2+-containing medium, malathion-induced [Ca2+]i rises was inhibited by store-operated Ca2+ channel blockers (2-APB, econazole or SKF96365) and the protein kinase C (PKC) inhibitor GF109203X. Malathion (5-25 μM) concentration-dependently caused cytotoxicity in GHA, DI TNC1 and DBTRG-05MG cells. This cytotoxic effect was partially prevented by prechelating cytosolic Ca2+ with BAPTA-AM (a selective Ca2+ chelator) only in GHA cells. Together, in GHA but not in DI TNC1 and DBTRG-05MG cells, malathion induced [Ca2+]i rises by inducing PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ channels. Furthermore, malathion induced Ca2+-associated cytotoxicity, suggesting that Ca2+ chelating may have a protective effect on malathion-induced cytotoxicity in normal human astrocytes.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
CS31041390 Econazole Related Compound C Econazole Related Compound C Price
qrcode