0

Viscoelastic and Shear Viscosity Studies of Colloidal Silica Particles Dispersed in Monoethylene Glycol (MEG), Diethylene Glycol (DEG), and Dodecane Stabilized by Dodecyl Hexaethylene Glycol Monoether (C12E6)

Justice M Thwala, Jim W Goodwin, Paul D Mills

Langmuir. 2008 Nov 18;24(22):12858-66.

PMID: 18850730

Abstract:

Silica dispersions stabilized by a nonionic surfactant, dodecyl hexaethylene glycol monoether (C 12E 6), were studied using rheological measurements. The viscosity-shear rate flow behavior of silica in monoethylene glycol (MEG) is shear thinning at low shear rates, leading to a Newtonian plateau at high shear rates for all dispersions studied. All rheological properties showed an increase above a critical surfactant concentration. The dispersions were stable at low levels of C 12E 6 concentrations because of electrostatic repulsions as deduced from the zeta potentials of silica that were on the order of about -30 to -65 mV in monoethylene glycol (MEG). Instability on further addition of C 12E 6 to the silica particles, a phenomenon normally obtained with high-molecular-weight polymers, was observed in MEG. Viscoelatic measurements of silica in monoethylene glycol at various surfactant concentrations showed a predominantly viscous response at low frequency and a predominantly elastic response at high frequencies, indicative of weak flocculation. Instability is explained in terms of hydrophobic and bridging interactions. Restabilization observed at high surfactant concentration was due to the steric repulsion of ethoxy groups of micellar aggregates adsorbed on silica particles. The study also revealed that the presence of trace water introduced charge repulsion that moderated rheological measurements in glycol media and introduced the charge reversal of silica particles in dodecane.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP2615158 Hexaethylene glycol Hexaethylene glycol 2615-15-8 Price
qrcode