0

Yeast Aconitase Mitochondrial Import Is Modulated by Interactions of Its C and N Terminal Domains and Ssa1/2 (Hsp70)

Reut Ben-Menachem, Katherine Wang, Orly Marcu, Zhang Yu, Teck Kwang Lim, Qingsong Lin, Ora Schueler-Furman, Ophry Pines

Sci Rep. 2018 Apr 12;8(1):5903.

PMID: 29651044

Abstract:

Molecules of single proteins, echoforms, can be distributed between two (or more) subcellular locations, a phenomenon which we refer to as dual targeting or dual localization. The yeast aconitase gene ACO1 (778 amino acids), encodes a single translation product that is nonetheless dual localized to the cytosol and mitochondria by a reverse translocation mechanism. The solved crystal structure of aconitase isolated from porcine heart mitochondria shows that it has four domains. The first three tightly associated N-terminal domains are tethered to the larger C-terminal fourth domain (C-terminal amino acids 517-778). We have previously shown that the aconitase C terminal domain constitutes an independent dual targeting signal when fused to mitochondria-targeted passenger-proteins. We show that the aconitase N and C-terminal domains interact and that this interaction is important for efficient aconitase post translational import into mitochondria and for aconitase dual targeting (relative levels of aconitase echoforms). Our results suggest a "chaperone-like function" of the C terminal domain towards the N terminal domains which can be modulated by Ssa1/2 (cytosolic Hsp70).

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP9024253 Aconitase from porcine heart Aconitase from porcine heart 9024-25-3 Price
qrcode